Publications by authors named "S Bals"

InP/ZnSe/ZnS core/shell/shell quantum dots are the most investigated quantum dot material for commercial applications involving visible light emission. The inner InP/ZnSe interface is complex since it is not charge balanced, and the InP surface is prone to oxidation. The role of oxidative defects at this interface has remained a topic of debate, with conflicting reports of both detrimental and beneficial effects on the quantum dot properties.

View Article and Find Full Text PDF

Plasmonic core-shell nanostructures can make photocatalysis more efficient for several reasons. The shell imparts stability to the nanoparticles, light absorption is expanded, and electron-hole pairs can be separated more effectively, thus reducing recombination losses. The synthesis of metal@TiO core-shell nanoparticles with nanometer control over the shell thickness and understanding its effect on the resulting photocatalytic efficiency still remains challenging.

View Article and Find Full Text PDF

The production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The growth of gold nanostructures with complex chiral shapes, like chiral gold nanorods and nanoparticles, is a rapidly developing area in nanochemistry.
  • This perspective focuses on the relationship between the shapes of these structures and the conditions during their synthesis, particularly through seed-mediated methods.
  • Key aspects discussed include the importance of chiral characterization and quantification, as well as the challenges to be overcome for better control in the synthesis of these nanostructures.
View Article and Find Full Text PDF
Article Synopsis
  • Ongoing research is focused on safely storing and utilizing hydrogen as a fuel alternative to carbon-based sources, but challenges like high energy costs due to its low density complicate this goal.
  • Clathrates, or gas hydrates, form when hydrogen is trapped in water molecules, providing a potential solution for safely storing hydrogen as they only require water to create these structures.
  • A proposed solution involves using hydrophobic mesoporous silica as a host material, which allows for hydrogen storage at lower pressures and temperatures, showing about a 20% reduction in required pressure for formation compared to traditional methods, with further insights gained from neutron scattering techniques.
View Article and Find Full Text PDF