InP/ZnSe/ZnS core/shell/shell quantum dots are the most investigated quantum dot material for commercial applications involving visible light emission. The inner InP/ZnSe interface is complex since it is not charge balanced, and the InP surface is prone to oxidation. The role of oxidative defects at this interface has remained a topic of debate, with conflicting reports of both detrimental and beneficial effects on the quantum dot properties.
View Article and Find Full Text PDFPlasmonic core-shell nanostructures can make photocatalysis more efficient for several reasons. The shell imparts stability to the nanoparticles, light absorption is expanded, and electron-hole pairs can be separated more effectively, thus reducing recombination losses. The synthesis of metal@TiO core-shell nanoparticles with nanometer control over the shell thickness and understanding its effect on the resulting photocatalytic efficiency still remains challenging.
View Article and Find Full Text PDFThe production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g.
View Article and Find Full Text PDF