Publications by authors named "S Ballaron"

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the alpha-galactosidase A () gene, which encodes the exogalactosyl hydrolase, alpha-galactosidase A (α-Gal A). Deficient α-Gal A activity results in the progressive, systemic accumulation of its substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), leading to renal, cardiac, and/or cerebrovascular disease and early demise. The current standard treatment for Fabry disease is enzyme replacement therapy, which necessitates lifelong biweekly infusions of recombinant enzyme.

View Article and Find Full Text PDF

The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson's disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes.

View Article and Find Full Text PDF

Background And Purpose: Inhibition of bradykinin metabolizing enzymes (BMEs) can cause acute angioedema, as demonstrated in a recent clinical trial in patients administered the antihypertensive, omapatrilat. However, the relative contribution of specific BMEs to this effect is unclear and confounded by the lack of a predictive pre-clinical model of angioedema.

Experimental Approach: Rats were instrumented to record blood pressure and heart rate; inhibitors were infused for 35 min and bradykinin was infused during the last 5 min to elicit hypotension, as a functional marker of circulating bradykinin and relative angioedema risk.

View Article and Find Full Text PDF

Sirolimus (rapamycin) is an immunosuppressant used in preventing allograft rejection and in drug-eluting stents to prevent restenosis after angioplasty. Zotarolimus, an analogue of sirolimus, was designed to have a shorter in vivo half-life. Zotarolimus was found to be mechanistically similar to sirolimus in having high-affinity binding to the immunophilin FKBP12 and comparable potency for inhibiting in vitro proliferation of both human and rat T cells.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPP4) inhibitors are emerging as a new class of therapeutic agents for the treatment of type 2 diabetes. They exert their beneficial effects by increasing the levels of active glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are two important incretins for glucose homeostasis. Starting from a high-throughput screening hit, we were able to identify a series of piperidinone- and piperidine-constrained phenethylamines as novel DPP4 inhibitors.

View Article and Find Full Text PDF