Publications by authors named "S Baiotto"

The present paper addresses the following question: can a simple regulatory bone remodeling model predict effects of unloading conditions on the trabecular bone morphology? In an attempt to answer this question, rat tail-suspension was chosen as a model that mimics the microgravity environment. Over 23 days, histomorphometric analysis was carried out on cross-sections of tibias of the suspended animals. The slices were digitalized and images discretized to obtain osteocyte distribution and apparent bone density.

View Article and Find Full Text PDF

The present paper addresses the following question can a simple regulatory bone remodeling model predict effects of viscosity on the trabecular morphology? For that, we propose an extension of a previous bone remodeling model by taking into account the viscosity properties of the tissue. Zener's law is used to describe the mechanical behavior of the bone and a specific law of the apparent bone density rate is proposed. Based on stability analysis, numerical simulations are then performed to investigate the viscosity role on simulations of the bone remodeling process.

View Article and Find Full Text PDF

It is well argued that osteocytes are mechanosensory cells and are involved in the regulation of bone remodeling. In previous works, the predictions from a simulation model have suggested that both the influencing distance of osteocytes and the magnitude of the mechanical loads determine the thickness of trabeculae whereas the number of osteocytes primarily affects the rate of bone remodeling. The question that remains not completely answered is: for the same number of osteocytes, what is the effect of different distributions on the remodeling process? Based on a particular regulatory bone remodeling model, the question is addressed, in part, by performing a stability analysis in connection with numerical simulations.

View Article and Find Full Text PDF