The spatio-temporal dynamics of traveling waves in glycolysis as it occurs in yeast extract have been studied, both theoretically and experimentally. We describe this phenomenon with the distributed Selkov model that accounts for the reactions of phosphofructokinase, which is a key enzyme of the glycolytic reaction cascade. To describe the experimentally observed phase waves in an open spatial reactor we introduce a non-homogeneous flux of substrate in the model.
View Article and Find Full Text PDFThe dynamics of glycolytic waves in a yeast extract have been investigated in an open spatial reactor. At low protein contents in the extract, we find a transition from inwardly moving target patterns at the beginning of the experiment to outwardly moving spiral- or circular-shaped waves at later stages. These two phases are separated by a transition phase of more complex spatiotemporal dynamics.
View Article and Find Full Text PDFAn open spatial reactor has been designed for the investigation of spatio-temporal dynamics of glycolysis. The reactor consists of a diffusive layer made of gel-fixed yeast extract which is in contact with a continuously stirred reservoir to supply this layer with substrates. The coupling between reaction and diffusion in the gel layer enables the formation of spatio-temporal patterns.
View Article and Find Full Text PDF