Besides being an essential structural component of plasma membranes and the precursor of many functional compounds and signaling molecules, cholesterol was also proposed to play a role in the etiology and/or manifestation of Parkinson's disease (PD). However, so far systematic investigations on the role of cholesterol and its metabolites present in the brain for the etiology of PD are missing. Here, we investigate for the first time the association of PD with SNPs in the genes of four cytochromes P450 (P450), CYP46A1, CYP39A1, CYP27A1 and CYP7B1, which are critical for the degradation of cholesterol in the brain.
View Article and Find Full Text PDFPurpose: We aimed to investigate how adults, who started gender-affirming hormone treatment during adolescence, reflect on their reproductive decisions.
Methods: We recruited transgender and gender-diverse (TGD) people who visited our gender identity clinic and commenced medical treatment in adolescence at least 9 years ago. We collected data through an online survey.
Background: There is concern that the values provided by devices using infrared thermometry in emergency departments (EDs) do not reflect body core temperature accurately.
Objectives: Evaluation of three thermometers commonly used in the ED.
Methods: Two infrared ear thermometers and an infrared forehead thermometer were evaluated using 1) the Voltcraft IRS-350 calibration device, 2) comparing temperature values to a rectal end-exercise temperature (T-RECT) of 38.
Parkinson's disease (PD) is one of the most frequent neurological diseases affecting millions of people worldwide. While the majority of PD cases are of unknown origin (idiopathic), about 5%-10% are familial and linked to mutations in different known genes. However, there are also people with a genetic predisposition to PD who do not develop the disease.
View Article and Find Full Text PDFNuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLOD, of 0.
View Article and Find Full Text PDF