Publications by authors named "S B Tove"

Prolidase isolated from the hyperthermophilic archaeon Pyrococcus furiosus has potential for application for decontamination of organophosphorus compounds in certain pesticides and chemical warfare agents under harsh conditions. However, current applications that use an enzyme-based cocktail are limited by poor long-term enzyme stability and low reactivity over a broad range of temperatures. To obtain a better enzyme for OP nerve agent decontamination and to investigate structural factors that influence protein thermostability and thermoactivity, randomly mutated P.

View Article and Find Full Text PDF

Prolidases hydrolyze the unique bond between X-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus compounds, including the nerve agents, soman and sarin. The advantages of using hyperthermophilic enzymes in biodetoxification strategies are based on their enzyme stability and efficiency. Therefore, it is advantageous to examine new thermostable prolidases for potential use in biotechnological applications.

View Article and Find Full Text PDF

Prolidase is a metallopeptidase that is ubiquitous in nature and has been isolated from mammals, bacteria and archaea. Prolidase specifically hydrolyzes dipeptides with a prolyl residue in the carboxy terminus (NH(2)-X-/-Pro-COOH). Currently, the only solved structure of prolidase is from the hyperthermophilic archaeon Pyrococcus furiosus.

View Article and Find Full Text PDF

Prolidases are dipeptidases specific for cleavage of Xaa-Pro dipeptides. Pyrococcus furiosus prolidase is a homodimer having one Co-bound dinuclear metal cluster per monomer with one tightly bound Co(II) site and the other loosely bound (Kd 0.24 mM).

View Article and Find Full Text PDF

Saccharomyces cerevisiae normally will not take up sterols from the environment under aerobic conditions. A specific mutant, upc2-1, of the predicted transcriptional activator UPC2 (YDR213w) has been recognized as a strain that allows a high level of aerobic sterol uptake. Another predicted transcriptional activator, the YLR228c gene product, is highly homologous to Upc2p.

View Article and Find Full Text PDF