Immune reactions to nanomedicines can be detrimental to the patient and compromise efficacy. However, our recent study characterizing the effects of a type III interferon (IFN-λ) response to lipid nanoparticles complexed with nucleic acids (lipoplexes) suggests that an IFN-λ pretreatment can increase tumor accumulation while decreasing off-target distribution of chemotherapeutic nanomedicines. This project provides a direct follow-up to our previously published works by clarifying 1) which cell type(s) can produce IFN-λ in response to lipoplexes and how the effects of IFN-λ may be propagated in humans.
View Article and Find Full Text PDFObjective: Liver disease is a growing cause of premature death in the UK. The National Health Service in England (NHS England) has funded regional early detection programmes through Community Liver Health Check pilots. 'Alright My Liver?' is Bristol and Severn's pilot service offering early detection of liver disease through screening events serving populations at risk, including people with a history of drug or alcohol use, type 2 diabetes and obesity.
View Article and Find Full Text PDFIn recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic.
View Article and Find Full Text PDFNanomedicines have been touted as the future of cancer therapy for decades. However, the field of tumor-targeted nanomedicine has failed to significantly advance toward becoming the primary choice for cancer intervention. One of the largest obstacles that has yet to be overcome is off-target accumulation of the nanoparticles.
View Article and Find Full Text PDFBackground: Persistent pulmonary hypertension (PH) causes significant mortality and morbidity in infants with congenital diaphragmatic hernia (CDH). Since pulmonary vascular abnormalities in CDH develop early during foetal development, we hypothesized that prenatal maternal administration of treprostinil, through its anti-remodelling effect, would improve the PH-phenotype in the nitrofen rat model of CDH.
Methods: In a dose-finding study in normal, healthy pregnant rats, we demonstrated target-range foetal plasma treprostinil concentrations without signs of toxicity.