Publications by authors named "S B Settlage"

Article Synopsis
  • Researchers studied how DNA copies itself in a plant called Arabidopsis thaliana, focusing on its chromosome 4 during different stages of the cell cycle.
  • They found that early and mid DNA copying stages looked similar and mostly affected the same parts, while late copying showed different patterns.
  • The study also revealed that specific chemical changes to proteins (called histones) play a big role in how DNA is copied and that this process in plants is more like what happens in fruit flies than in mammals.
View Article and Find Full Text PDF

Geminiviruses belong to a rapidly growing group of plant pathogens that contribute to crop losses in tropical and subtropical areas of the world. Geminivirus infection is a model for plant DNA replication and virus/host interactions. Geminiviruses are also used as vectors to induce silencing of endogenous genes in several plant species.

View Article and Find Full Text PDF

Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR).

View Article and Find Full Text PDF

The geminivirus replication factor AL1 interacts with the plant retinoblastoma-related protein (pRBR) to modulate host gene expression. The AL1 protein of tomato golden mosaic virus (TGMV) binds to pRBR through an 80-amino-acid region that contains two highly predicted alpha-helices designated 3 and 4. Earlier studies suggested that the helix 4 motif, whose amino acid sequence is strongly conserved across geminivirus replication proteins, plays a role in pRBR binding.

View Article and Find Full Text PDF

SUMMARY Geminiviruses constitute a large family of plant-infecting viruses with small, single-stranded DNA genomes that replicate through double-stranded intermediates. Because of their limited coding capacity, geminiviruses supply only the factors required to initiate their replication and use plant nuclear DNA polymerases to amplify their genomes. Many geminiviruses replicate in differentiated cells that no longer contain detectable levels of host DNA polymerases and associated factors.

View Article and Find Full Text PDF