Side chains possess a broader conformational space (compared to the backbone) and are directly affected by intra- and intermolecular interactions, hence their dynamics and the corresponding NMR relaxation data are more sensitive and informative. Nevertheless, transverse relaxation in [Formula: see text] ([Formula: see text] or [Formula: see text]) spin systems is predominantly non-measurable in uniformly [Formula: see text]-labeled proteins due to cross-correlation effects. In the present publication, we propose a number of pulse sequences for accurate and precise measurement of the dipole-dipole transverse cross-correlated relaxation rate [Formula: see text], which, similarly to [Formula: see text] measurements, provides information about the amplitudes of intramolecular dynamics.
View Article and Find Full Text PDFThis study presents purification, activity characterization, and (1)H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens.
View Article and Find Full Text PDFNMR spectroscopy and computer simulations were used to examine changes in chemical shifts and in dynamics of the ribonuclease barnase that result upon binding to its natural inhibitor barstar. Although the spatial structures of free and bound barnase are very similar, binding results in changes of the dynamics of both fast side-chains, as revealed by (2)H relaxation measurements, and NMR chemical shifts in an extended beta-sheet that is located far from the binding interface. Both side-chain dynamics and chemical shifts are sensitive to variations in the ensemble populations of the inter-converting molecular states, which can escape direct structural observation.
View Article and Find Full Text PDFThe precision of techniques and factors affecting the interpretation of residual dipolar couplings (RDCs) in analysis of spatial structures of partially aligned proteins are discussed. Experimental RDC values were obtained for pairs of 1H-15N nuclei of the protein barstar partially aligned in a liquid crystalline matrix of bicelles composed of dimiristoylphosphatidylcholine and dihexanoylphosphatidylcholine. The observed couplings agree well with the spatial structures of barstar determined earlier by X-ray and NMR methods.
View Article and Find Full Text PDFThe C40,82A;I87E mutant of barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens, was obtained, and its physicochemical properties were studied. It was produced as a fusion protein with thioredoxin and then cleaved from this by EKmax enterokinase. The mutant was shown by NMR to retain the spatial structure of the wild-type protein but, in contrast to barstar, does not form the homodimers characteristic of barstar in aqueous solution.
View Article and Find Full Text PDF