A series of new cationic first-row transition metal complexes of [Mn(sac)(HO)(tpma)](sac)·HO (Mn), [(μ-O){FeCl(tpma)}](sac)·3HO (Fe), [Co(sac)(HO)(tpma)](sac)·HO (Co), [Ni(HO)(tpma)](sac)·2HO (Ni), [Cu(sac)(tpma)](sac) (Cu) and [Zn(sac)(HO)(tpma)](sac) (Zn), where sac = saccharinate and tpma = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized by elemental analysis, UV-Vis, IR, ESI-MS, NMR, X-ray diffraction and conductivity measurements. The cytotoxic activity of the metal complexes was evaluated against lung carcinoma (A549), breast adenocarcinoma (MCF7), colon (HT29), and normal BEAS-2B cell lines. Mn and Fe displayed potent cytotoxic activity in all cell lines with IC values between 1.
View Article and Find Full Text PDFChanges in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature.
View Article and Find Full Text PDFThe COVID-19 outbreak caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to have high incidence and mortality rate globally. To meet the increasingly growing demand for new therapeutic drugs and vaccines, researchers are developing different diagnostic techniques focused on screening new drugs in clinical use, developing an antibody targeting a SARS-CoV-2 receptor, or interrupting infection/replication mechanisms of SARS-CoV-2. Although many prestigious research publications are addressing this subject, there is no open access platform where all experimental techniques for COVID-19 research can be seen as a whole.
View Article and Find Full Text PDFSmall molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies.
View Article and Find Full Text PDFThe current study assessed the effects of the thalidomide and palladium (II) saccharinate complex of terpyridine on the suppression of angiogenesis-mediated cell proliferation. The viability was assessed after treatment with palladium (II) complex (1.56-100 μM) and thalidomide (0.
View Article and Find Full Text PDF