Publications by authors named "S Avnet"

The advancement of personalized treatments in oncology has garnered increasing attention, particularly for rare and aggressive cancer with low survival rates like the bone tumors osteosarcoma and chondrosarcoma. This study introduces a novel PDMS-agarose microfluidic device tailored for generating patient-derived tumor spheroids and serving as a reliable tool for personalized drug screening. Using this platform in tandem with a custom imaging index, we evaluated the impact of the anticancer agent doxorubicin on spheroids from both tumor types.

View Article and Find Full Text PDF

Chondrosarcomas (CHS) constitute approximately 20% of all primary malignant bone tumors, characterized by a slow growth rate with initial manifestation of few signs and symptoms. These malignant cartilaginous neoplasms, particularly those with dedifferentiated histological subtypes, pose significant therapeutic challenges, as they exhibit high resistance to both radiation and chemotherapy. Ranging from relatively benign, low-grade tumors (grade I) to aggressive high-grade tumors with the potential for lung metastases and a grim prognosis, there is a critical need for innovative diagnostic and therapeutic approaches, particularly for patients with more aggressive forms.

View Article and Find Full Text PDF

Extracellular acidosis stemming from altered tumor metabolism promotes cancer progression by enabling tumor cell adaptation to the hostile microenvironment. In osteosarcoma, we have previously shown that acidosis increases tumor cell survival alongside substantial lipid droplet accumulation. In this study, we explored the role of lipid droplet formation in mitigating cellular stress induced by extracellular acidosis in osteosarcoma cells, thereby enhancing tumor survival during progression.

View Article and Find Full Text PDF
Article Synopsis
  • Bioprinting is a cool way to create 3D models of living cells, but it’s tricky to check if those cells are alive.
  • In this study, scientists tested different special materials (bioinks) to see how well they could grow bone cells and check their health.
  • They found that using automated machines to look at the cells was much faster and more accurate than counting by hand, making it easier to study how the cells work together in these 3D models.
View Article and Find Full Text PDF

Background: Heterozygous isocitrate dehydrogenase (IDH) mutations occur in about half of conventional central bone chondrosarcomas (CCBC). Aim of this study was to assess the frequency and prognostic impact of IDH mutations in high grade CCBC patients.

Methods: 64 patients with G2 and G3 CCBC were included.

View Article and Find Full Text PDF