Publications by authors named "S Assinder"

Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract.

View Article and Find Full Text PDF

A model of oxytocin in the regulation of metabolic status has described one of oxytocin synthesis and release from the neurohypophysis in response to leptin, to suppress further leptin release. In addition, a lipogenic role for oxytocin has been suggested, consistent with an insulinergic action. This model, however, may be incorrect.

View Article and Find Full Text PDF

The lipid content of mammalian cells varies greatly between cell type. Current methods for analysing lipid components of cells are technically challenging and destructive. Here, we report a facile, inexpensive method to identify lipid content - intracellular flow cytometric lipid analysis (IFCLA).

View Article and Find Full Text PDF

The androgen receptor (AR) is a major driver of prostate cancer (PCa) and a key therapeutic target for AR inhibitors (ie, Enzalutamide). However, Enzalutamide only inhibits androgen-dependent AR signaling, enabling intrinsic AR activation via androgen-independent pathways, leading to aggressive castration-resistant PCa (CRPC). We investigated the ability of novel anti-cancer agents, Dp44mT and DpC, to overcome androgen resistance.

View Article and Find Full Text PDF

The urothelium of the bladder and urethra are derived from the definitive endoderm during development. Cellular signaling molecules important to the developmental specification of the urothelium are also implicated in the dysregulation of the tissue repair mechanism characteristic of bladder disease. Hence, a complete understanding of the regulation of urothelium development is central to understanding the processes of bladder disease, and in development of simple chemically defined methods for use in regenerative medicine.

View Article and Find Full Text PDF