The aim of this study was to evaluate the lipid-lowering and plasma cholesteryl ester transfer protein(CETP) activity of (CL) and β-Sitosterol(βS) following intraperitoneal administration of Triton-WR 1339 (=Tyloxapol) (TWR) to male Wistar rats. Hyperlipidemia(HL) was developed by intraperitoneal injection of TWR. The animals were divided into main eight groups of six rats each.
View Article and Find Full Text PDFThe tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis.
View Article and Find Full Text PDFPurpose: This study aimed to explore the associations between homocysteine, rumination, affective temperaments, clinical features, and hopelessness in bipolar disorder-1 (BD-1).
Materials And Methods: In total, 57 euthymic patients with BD-1 and 57 healthy controls were included. The Beck Hopelessness Scale (BHS), Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire (TEMPS-A), and Ruminative Responses Scale Short Form (RRS-SF) were administered.
The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.
View Article and Find Full Text PDFPROteolysis TArgeting Chimeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are intractable to classic inhibitors. Heterobifunctional in nature, PROTACs are small molecules that offer a unique mechanism of protein degradation by hijacking the ubiquitin-mediated protein degradation pathway, known as the ubiquitin-proteasome system. Herein, we present an analysis on the structural characteristics of this novel chemical modality.
View Article and Find Full Text PDF