Publications by authors named "S Artandi"

Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness.

View Article and Find Full Text PDF

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (Tert) cell population located in the ductal region of the adult SMG.

View Article and Find Full Text PDF

Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement (DTM) by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with up to 30 bp resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance.

View Article and Find Full Text PDF

Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and elongation with unprecedented resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance.

View Article and Find Full Text PDF