Publications by authors named "S Armando Villalta"

Clinical trials for Duchenne muscular dystrophy (DMD) are assessing the therapeutic efficacy of systemically delivered adeno-associated virus (AAV) carrying a modified transgene. High vector doses (>1E14 vg/kg) are needed to globally transduce skeletal muscles; however, such doses trigger immune-related adverse events. Mitigating these immune responses is crucial for widespread application of AAV-based therapies.

View Article and Find Full Text PDF

Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP.

View Article and Find Full Text PDF

The decline of urethral function with advancing age plays a major role in urinary incontinence in women, impairing quality of life and economically burdening the health care system. However, none of the current urinary incontinence treatments address the declining urethral function with aging, and the mechanisms by which aging impacts urethra physiology remain little known or explored. Here, we have compared functional, morphometric, and global gene expression of urethral tissues between young and old female mice.

View Article and Find Full Text PDF

A suppressive type of immune cell called a regulatory T cell has a key role in helping muscles to adapt to exercise — guarding muscle mitochondrial organelles against damage mediated by proinflammatory factors generated during physical activity.

View Article and Find Full Text PDF

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows.

View Article and Find Full Text PDF