The integration of artificial intelligence (AI) education into medical curricula is critical for preparing future healthcare professionals. This research employed the Delphi method to establish an expert-based AI curriculum for Canadian undergraduate medical students. A panel of 18 experts in health and AI across Canada participated in three rounds of surveys to determine essential AI learning competencies.
View Article and Find Full Text PDFIn molecular-dynamics simulations of fluids, the Einstein-Helfand (EH) and Green-Kubo (GK) relationships are frequently used to compute a variety of transport coefficients, including diffusion coefficients. These relationships are formally valid in the limit of infinite sampling time: The error in the estimate of a transport coefficient (relative to an infinitely long simulation) asymptotically approaches zero as more dynamics are simulated and recorded. In practice, of course, one can only simulate a finite number of particles for a finite amount of time.
View Article and Find Full Text PDFRadial distribution functions (RDFs) are widely used in molecular simulation and beyond. Most approaches to computing RDFs require assembling a histogram over inter-particle separation distances. In turn, these histograms require a specific (and generally arbitrary) choice of discretization for bins.
View Article and Find Full Text PDFThin film evaporation is a widely-used thermal management solution for micro/nano-devices with high energy densities. Local measurements of the evaporation rate at a liquid-vapor interface, however, are limited. We present a continuous profile of the evaporation heat transfer coefficient ([Formula: see text]) in the submicron thin film region of a water meniscus obtained through local measurements interpreted by a machine learned surrogate of the physical system.
View Article and Find Full Text PDF