To compare the different philosophies, emphases and processes of national and international accreditation paths available to pharmacy programs in Gulf Cooperation Council (GCC) countries. To identify engagement of GCC pharmacy programs with International Pharmacy Accreditation or Certification (IPAC) and the outcome advantages of IPAC compared to other national accreditation standards. National quality standards across the GCC countries are similarly structured but in different stages of development.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density.
View Article and Find Full Text PDFP2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmd(mdx) mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death.
View Article and Find Full Text PDFSarcolemma damage and activation of various calcium channels are implicated in altered Ca(2+) homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca(2+) concentrations due to alterations of both ionotropic and metabotropic purinergic receptors. Here we extend these findings to show that the mdx mutation is associated with enhanced store-operated calcium entry (SOCE).
View Article and Find Full Text PDF