Publications by authors named "S Arekapudi"

Ultrafast demagnetization in diverse materials has sparked immense research activities due to its captivating richness and contested underlying mechanisms. Among these, the two most celebrated mechanisms have been the spin-flip scattering (SFS) and spin transport (ST) of optically excited carriers. In this work, we have investigated femtosecond laser-induced ultrafast demagnetization in perpendicular magnetic anisotropy-based synthetic antiferromagnets (p-SAFs) where [Co/Pt]/Co multilayer blocks are separated by Ru or Ir spacers.

View Article and Find Full Text PDF

Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical film thickness and measurement temperature, bimetallic Mn-based alloys and transition-metal oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena.

View Article and Find Full Text PDF

Interfaces separating ferromagnetic (FM) layers from non-ferromagnetic layers offer unique properties due to spin-orbit coupling and symmetry breaking, yielding effects such as exchange bias, perpendicular magnetic anisotropy, spin-pumping, spin-transfer torques, and conversion between charge and spin currents and vice versa. These interfacial phenomena play crucial roles in magnetic data storage and transfer applications, which require the formation of FM nanostructures embedded in non-ferromagnetic matrices. Here, we investigate the possibility of creating such nanostructures by ion irradiation.

View Article and Find Full Text PDF

High oxygen affinity hemoglobins (Hbs), characterized by a decreased ability to release oxygen to the tissues and a left-shifted oxygen dissociation curve, are a rare cause of secondary erythrocytosis. Here, we report a base substitution in the β-globin gene at codon 89 (AG>AG) in a kindred with familial erythrocytosis resulting in Hb Vanderbilt, a high oxygen affinity variant.

View Article and Find Full Text PDF

In the last decade, two revolutionary concepts in nanomagnetism emerged from research for storage technologies and advanced information processing. The first suggests the use of magnetic domain walls in ferromagnetic nanowires to permanently store information in domain-wall racetrack memories. The second proposes a hardware realization of neuromorphic computing in nanomagnets using nonlinear magnetic oscillations in the gigahertz range.

View Article and Find Full Text PDF