Publications by authors named "S Aranda-Espinoza"

Cells are dynamic systems with complex mechanical properties, regulated by the presence of different species of proteins capable to assemble (and disassemble) into filamentous forms as required by different cells functions. Giant unilamellar vesicles (GUVs) of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) are systems frequently used as a simplified model of cells because they offer the possibility of assaying separately different stimuli, which is no possible in living cells. Here we present a study of the effect of acting protein on mechanical properties of GUVs, when the protein is inside the vesicles in either monomeric G-actin or filamentous F-actin.

View Article and Find Full Text PDF

We report a experimental study of the motion of 1 m single particles interacting with functionalized walls at low and moderate ionic strengths conditions. The 3D particle's trajectories were obtained by analyzing the diffracted particle images (point spread function). The studied particle/wall systems include negatively charged particles interacting with bare glass, glass covered with polyelectrolytes and glass covered with a lipid monolayer.

View Article and Find Full Text PDF

The potential use of magnetic nanoparticles (MNPs) in biomedicine as magnetic resonance, drug delivery, imagenology, hyperthermia, biosensors, and biological separation has been studied in different laboratories. One of the challenges on MNP elaboration for biological applications is the size, biocompatibility, heat efficiency, stabilization in physiological conditions, and surface coating. Magnetoliposome (ML), a lipid bilayer of phospholipids encapsulating MNPs, is a system used to reduce toxicity.

View Article and Find Full Text PDF

Carbon Nanotubes (CNTs) are considered alternative materials for the design of advanced drug and gene delivery vectors. However, the mechanism responsible for the cellular membrane intake of CNTs is not well understood. In the present study, we show how multi-walled carbon nanotubes (MWCNTs) owning different surface properties, interact with giant unilamellar vesicles (GUVs), a simple model system for cellular membranes.

View Article and Find Full Text PDF

The phase behavior of hard spherocylinders (HSCs) confined in cylindrical cavities is studied using Monte Carlo simulations in the canonical ensemble. Results are presented for different values of the particles' aspect ratio l/σ, where l and σ are the length and diameter of the cylinder and hemispherical caps, respectively. Finite cavities with periodic boundary conditions along the principal axis of the cavities have been considered, where the cavity's principal axis is along the z-direction.

View Article and Find Full Text PDF