GT103 is a first-in-class, fully human, IgG3 monoclonal antibody targeting complement factor H that kills tumor cells and promotes anti-cancer immunity in preclinical models. We conducted a first-in-human phase 1b study dose escalation trial of GT103 in refractory non-small cell lung cancer to assess the safety of GT103 (NCT04314089). Dose escalation was performed using a "3 + 3" schema with primary objectives of determining safety, tolerability, PK profile and maximum tolerated dose (MTD) of GT103.
View Article and Find Full Text PDFSingle agent immune checkpoint inhibitors have been ineffective for patients with advanced stage and recurrent high grade serous ovarian cancer (HGSOC). Using pre-clinical models of HGSOC, we evaluated the anti-tumor and immune stimulatory effects of an oncolytic adenovirus, MEM-288. This conditionally replicative virus encodes a modified membrane stable CD40L and IFNβ.
View Article and Find Full Text PDFBackground: Direct comparison of tumor microenvironment of matched lung cancer biopsies and pleural effusions (PE) from the same patients is critical in understanding tumor biology but has not been performed. This is the first study to compare the lung cancer and PE microenvironment by single-cell RNA sequencing (scRNA-seq).
Methods: Matched lung cancer biopsies and PE were obtained prospectively from ten patients.
Perfusable microvascular networks offer promising three-dimensional models to study normal and compromised vascular tissues as well as phenomena such as cancer cell metastasis. Engineering of these microvascular networks generally involves the use of endothelial cells stabilized by fibroblasts to generate robust and stable vasculature. However, fibroblasts are highly heterogenous and may contribute variably to the microvascular structure.
View Article and Find Full Text PDF