Publications by authors named "S Ammar-Merah"

The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu or Tb doped CaF and LaF NPs by Raman scatters.

View Article and Find Full Text PDF

Current biomedical imaging techniques are crucial for the diagnosis of various diseases. Each imaging technique uses specific probes that, although each one has its own merits, do not encompass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.).

View Article and Find Full Text PDF

An alternative route for metal hydrogenation has been investigated: cold plasma hydrogen implantation on polyol-made transition metal nanoparticles. This treatment applied to a challenging system, Ni-H, induces a re-ordering of the metal lattice, and superstructure lines have been observed by both Bragg-Brentano and grazing incidence X-ray diffraction. The resulting intermetallic structure is similar to those obtained by very high-pressure hydrogenation of nickel and prompt us to suggest that plasma-based hydrogen implantation in nanometals is likely to generate unusual metal hydride, opening new opportunities in chemisorption hydrogen storage.

View Article and Find Full Text PDF

After about three decades of development, the polyol process is now widely recognized and practised as a unique soft chemical method for the preparation of a large variety of nanoparticles which can be used in important technological fields. It offers many advantages: low cost, ease of use and, very importantly, already proven scalability for industrial applications. Among the different classes of inorganic nanoparticles which can be prepared in liquid polyols, metals were the first reported.

View Article and Find Full Text PDF