Publications by authors named "S Amiroudine"

This paper considers the mixing of two dielectric miscible viscous liquids with different electric permittivities bounded by solid walls in an external electric field normal to the interface of the liquids. The mutual diffusion of these two liquids leads to the formation of an unsteady self-similar 1D diffusion layer. This layer is found to be unstable to the perturbations of the interface.

View Article and Find Full Text PDF

The instability of an electrolyte surface to a high-frequency, 10 to 200kHz, electric field, normal to the interface is investigated theoretically. From a practical viewpoint, such a high frequency leads to the absence of undesired electrochemical reactions and provides an additional control parameter. The theory of unsteady electric double layer by Barrero and Ramos is exploited.

View Article and Find Full Text PDF

The stability of the electroosmotic flow of the two-phase system electrolyte-dielectric with a free interface in the microchannel under an external electric field is examined theoretically. The mathematical model includes the Nernst-Plank equations for the ion concentrations. The linear stability of the 1D nonstationary solution with respect to the small, periodic perturbations along the channel, is studied.

View Article and Find Full Text PDF

Supercritical fluids when subjected to simultaneous quench and vibration have been known to cause various intriguing flow phenomena and instabilities depending on the relative direction of temperature gradient and vibration. Here we describe a surprising and interesting phenomenon wherein temperature in the fluid falls below the imposed boundary value when the walls are quenched and the direction of vibration is normal to the temperature gradient. We define these regions in the fluid as sink zones, because they act like sink for heat within the fluid domain.

View Article and Find Full Text PDF

Lab-on-chip devices employ EOF for transportation and mixing of liquids. However, when a steady (DC) electric field is applied to the liquids, there are undesirable effects such as degradation of sample, electrolysis, bubble formation, etc. due to large magnitude of electric potential required to generate the flow.

View Article and Find Full Text PDF