Publications by authors named "S Ametamey"

The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs.

View Article and Find Full Text PDF

Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes.

View Article and Find Full Text PDF

The -methyl-d-aspartate receptor (NMDAR) subtype 2B (GluN1/2B) is implicated in various neuropathologies. Given the lack of a validated radiofluorinated positron emission tomography (PET) probe for the imaging of GluN1/2B receptors, we comprehensively investigated the enantiomers of [F]OF-NB1 in rodents. Particularly, the ()- and ()- enantiomers were evaluated using docking, autoradiography, PET imaging, and biodistribution studies.

View Article and Find Full Text PDF

GluN2B subunit-containing methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. The aim of this study was to develop a novel synthetic approach that allows an enantiomerically pure radiosynthesis of the previously reported PET radioligands ()[F]OF-NB1 and ()[F]OF-NB1 as well as to assess their and performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents.

View Article and Find Full Text PDF

Animal models indicate that the endocannabinoid system (ECS) plays a modulatory role in stress and reward processing, both crucially impaired in addictive disorders. Preclinical findings showed endocannabinoid-modulated synaptic plasticity in reward brain networks linked to the metabotropic-glutamate-5 receptor (mGluR5), contributing to drug-reinforcing effects and drug-seeking behavior. Although animal models postulate a link between ECS and cocaine addiction, human translational studies are lacking.

View Article and Find Full Text PDF