Publications by authors named "S Allner"

Histopathology as a diagnostic mainstay for tissue evaluation is strictly a 2D technology. Combining and supplementing this technology with 3D imaging has been proposed as one future avenue towards refining comprehensive tissue analysis. To this end, we have developed a laboratory-based X-ray method allowing for the investigation of tissue samples in three dimensions with isotropic volume information.

View Article and Find Full Text PDF

Wood decomposition is a central process contributing to global carbon and nutrient cycling. Quantifying the role of the major biotic agents of wood decomposition, i.e.

View Article and Find Full Text PDF

In the field of correlative microscopy, light and electron microscopy form a powerful combination for morphological analyses in zoology. Due to sample thickness limitations, these imaging techniques often require sectioning to investigate small animals and thereby suffer from various artefacts. A recently introduced nanoscopic X-ray computed tomography (NanoCT) setup has been used to image several biological objects, none that were, however, embedded into resin, which is prerequisite for a multitude of correlative applications.

View Article and Find Full Text PDF

For fully characterizing renal cell carcinoma (RCC), information about the 3D tissue microstructure is essential. Histopathology, which represents the current diagnostic gold standard, is destructive and only provides 2D information. 3D X-ray histology endeavors to overcome these limitations by generating 3D data.

View Article and Find Full Text PDF

We demonstrate a laboratory-based method combining X-ray microCT and nanoCT with a specific X-ray stain, which targets the cell cytoplasm. The described protocol is easy to apply, fast and suitable for larger soft-tissue samples. The presented methodology enables the characterization of crucial tissue structures in three dimensions and is demonstrated on a whole mouse kidney.

View Article and Find Full Text PDF