Publications by authors named "S Alibert-Franco"

In Gram-negative bacteria, the envelope is a sophisticated barrier protecting the cell against external toxic compounds. Membrane transporters, e.g.

View Article and Find Full Text PDF

The present study assessed the antimicrobial activities of various natural products belonging to the terpenoids, alkaloids and phenolics against a collection of Gram-negative multidrug-resistant (MDR) bacteria. The results demonstrated that most of the compounds were extruded by bacterial efflux pumps. In the presence of the efflux pump inhibitor phenylalanine arginine β-naphthylamide (PAβN), the activities of laurentixanthone B (xanthone), plumbagin (naphthoquinone), 4-hydroxylonchocarpin (flavonoid) and MAB3 (coumarin) increased significantly against all studied MDR bacteria.

View Article and Find Full Text PDF

The activities of two naturally occurring compounds, isobavachalcone and diospyrone, against documented strains and multidrug-resistant (MDR) Gram-negative bacterial isolates were evaluated. The results indicated that the two compounds exhibited intrinsic antibacterial activity against several Gram-negative bacteria, and their activities were significantly improved in the presence of an efflux pump inhibitor (MIC values decreased to below 10 microg/ml). In addition, the activities of isobavachalcone and diospyrone against various strains exhibiting deletions of the major efflux pump components (AcrAB, TolC) were significantly increased.

View Article and Find Full Text PDF

Chemoresistance is a general health problem concerning infectious diseases and cancer treatments. In this context, the worldwide dissemination of << pandrug >> and << multidrug>> resistant pathogens has severely compromised the efficacy of our antimicrobial weapons and dramatically increased the occurence of therapeutic failure. To efficiently combat multi-resistant pathogens, it is necessary to clearly define the molecular basis of the general resistance mechanism associated with the expression of active efflux pumps, which strongly restrict the intracellular concentration of antimicrobial drugs.

View Article and Find Full Text PDF

After several decades of continuously successful antibiotic therapy against bacterial infections, we are now facing a worrying prospect: the accelerated evolution of antibiotic resistance to important human pathogens and the scarcity of new anti-infective drug families under development. Efflux is a general mechanism responsible for bacterial resistance to antibiotics. This active drug transport is involved in low intrinsic susceptibility, cross-resistance to chemically unrelated classes of molecules, and selection/acquisition of additional mechanisms of resistance.

View Article and Find Full Text PDF