Publications by authors named "S Ali'"

Type-2-diabetes is a metabolic disorder where misfolding and oligomerization of islet amyloid polypeptide (IAPP) around islet-β cells oligomerizes and participates in the pathology. The oligomeric stage is toxic but transitory and leads to the formation of mature amyloid fibrils. The pathological specifics of mature amyloid fibrils are poorly understood.

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as succinic acid (SA) and oxalic acid (OA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a pot experiment to assess the impact of SA (0.

View Article and Find Full Text PDF

The toxic tannery solid waste leachate (TSWL) containing heavy metals is generated after the percolation of rainwater in openly dumped tannery solid waste (TSW) which poses a serious threat to the surroundings by leaching down and bioaccumulation. For its management, the phytoextraction potential of Pistia stratiotes L. and Spirodela polyrhiza L.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis.

Method: We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury.

View Article and Find Full Text PDF

The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF