Nesfatin-1 and ghrelin, initially recognised as hormones involved in regulating energy, have emerged as crucial players with vital functions in various human body systems. In this study, we conducted a comparative assessment of nesfatin-1 and ghrelin responses in individuals experiencing metabolic stress due to diabetes, those with depressive diabetes characterised by both metabolic and mental stress, and healthy controls. We collected blood samples from a total of 90 participants, consisting of 30 people with type II diabetes mellitus (DM), 30 people with type II DM and major depressive disorders, and 30 healthy individuals.
View Article and Find Full Text PDFIn recent years exposure of living beings to radiofrequency radiation (RFR) emitted from wireless equipment has increased. In this study, we investigated the effects of 3.5-GHz RFR on hormones that regulate energy metabolism in the body.
View Article and Find Full Text PDFBackground: The nucleosome assembly protein 1-like 1 (NAP1L1) is suggested to have an oncogenic role in several tumors based on its overexpression. However, its diagnostic and prognostic role in gastric cancer remains unclarified. This study aimed to evaluate the diagnostic and prognostic utility of NAP1L1 in gastric cancer patients.
View Article and Find Full Text PDFAims: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, often caused by pathogenic sarcomere mutations. Early characteristics of HCM are diastolic dysfunction and hypercontractility. Treatment to prevent mutation-induced cardiac dysfunction is lacking.
View Article and Find Full Text PDFEmploying animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect.
View Article and Find Full Text PDF