Publications by authors named "S Alexander-Bowman"

The effects of a selective bradykinin 1 receptor antagonist, compound A, were evaluated in a canine model of acute inflammatory model of arthritis. Despite detection of the B receptor in canine type B synoviocytes using a fluorescent ligand, oral administration of compound A (9 and 27 mg/kg) did not improve weight bearing of dogs injected intra-articularly with IL-1β in a force plate analysis. Analysis of the synovial fluid of IL-1β-treated dogs indicated high levels of bradykinin postchallenge.

View Article and Find Full Text PDF

This study reports the identification of nematode neuropeptide-like protein (nlp) sequelogs from the GenBank expressed sequence tag (EST) database, using BLAST (Basic Local Alignment Search Tool) search methodology. Search strings derived from peptides encoded by the 45 known Caenorhabditis elegans nlp genes were used to identify more than 1000 ESTs encoding a total of 26 multi-species nlp sequelogs. The remaining 18 nlps (nlp-4, -16, -24 through -36, -39, -41 and -45) were identified only in C.

View Article and Find Full Text PDF

KHEYLRF-NH(2) (AF2) is a FMRFamide-related peptide (FaRP) present in parasitic and free-living nematodes. At concentrations as low as 10 pM, AF2 induces a biphasic tension response, consisting of a transient relaxation followed by profound excitation, in neuromuscular strips prepared from Ascaris suum. In the present study, the effects of AF2 on cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and inositol-1,4,5-triphosphate (IP(3)) levels were measured following muscle tension recordings from 2 cm neuromuscular strips prepared from adult A.

View Article and Find Full Text PDF

FMRFamide-related peptides are widespread among the Nematoda. Among them is a family of extended PNFLRFamide peptides encoded on the flp-1 peptide precursor gene in Caenorhabditis elegans. The most studied peptide from this series is SDPNFLRFamide (PF1).

View Article and Find Full Text PDF

Oxindole alkaloids in the paraherquamide/marcfortine family exhibit broad-spectrum anthelmintic activity that includes drug-resistant strains of nematodes. Paraherquamide (PHQ), 2-deoxoparaherquamide (2DPHQ), and close structural analogs of these compounds rapidly induce flaccid paralysis in parasitic nematodes in vitro, without affecting adenosine triphosphate (ATP) levels. The mechanism of action of this anthelmintic class was investigated using muscle tension and microelectrode recording techniques in isolated body wall segments of Ascaris suum.

View Article and Find Full Text PDF