Publications by authors named "S Alegre-Gomez"

Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding T cell function requires exploring the molecular dynamics involved in T cell activation and effector function.
  • The Jurkat (JK) CD4 T cell line serves as a valuable in vitro model for studying the intracellular signaling pathways triggered by T cell receptor (TCR) activation.
  • The text outlines protocols to assess TCR and costimulation-mediated activation, immunological synapse formation, and cytokine production, which are key processes in T cell responses across various pathophysiological contexts.
View Article and Find Full Text PDF

We have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS.

View Article and Find Full Text PDF

T cell activation and effector function is mediated by the formation of a long-lasting interaction established between T cells and antigen-presenting cells (APCs) called immunological synapse (IS). During T cell activation, different signaling molecules as well as the cytoskeleton and the endosomal compartment are polarized to the IS. This molecular dynamics is tightly regulated by phosphorylation networks, which are controlled by protein tyrosine phosphatases (PTPs).

View Article and Find Full Text PDF

The regulatory role of most dual specific phosphatases during T cell activation remains unknown. Here, we have studied the expression and function of phosphatases of regenerating liver (PRLs: PRL-1, PRL-2, and PRL-3) during T cell activation, as well as, the dynamic delivery of PRL-1 to the Immunological Synapse (IS). We found that T cell activation downregulates the expression of PRL-2, resulting in an increased PRL-1/PRL-2 ratio.

View Article and Find Full Text PDF