The fundamental mechanisms which control the phase coherence of the polariton Bose-Einstein condensate (BEC) are determined. It is shown that the combination of number fluctuations and interactions leads to decoherence with a characteristic Gaussian decay of the first-order correlation function. This line shape, and the long decay times ( approximately 150 ps) of both first- and second-order correlation functions, are explained quantitatively by a quantum-optical model which takes into account interactions, fluctuations, and gain and loss in the system.
View Article and Find Full Text PDF