Publications by authors named "S Akkad"

Chemokines are proteins important for a range of biological processes from cell-directed migration (chemotaxis) to cell activation and differentiation. Chemokine C-C ligand 5 (CCL5) is an important pro-inflammatory chemokine attracting immune cells towards inflammatory sites through interaction with its receptors CCR1/3/5. Recombinant production of large quantities of CCL5 in Escherichia coli is challenging due to formation of inclusion bodies which necessitates refolding, often leading to low recovery of biologically active protein.

View Article and Find Full Text PDF

Prostate cancer is the most common cancer in men in the UK with over 50 000 new cases diagnosed each year and although therapeutic advances in surgery, anti-androgens, radio- and chemotherapy have increased survival rates, there still remains a need for new treatments to combat the most aggressive forms of the disease. Gene therapy offers promise as an alternative approach but is reliant on selective targeting to the cancer cell surface. Herein we describe the novel construction of a prostate specific membrane antigen (PSMA) binding bioconjugate-polyplex, based on a glutamate-urea peptide scaffold using 'click' chemistry, which we demonstrate is capable of targeted delivery of a GFP gene to PSMA overexpressing prostate cancer cells, and therefore may have potential future application as part of a prostate cancer gene delivery therapy.

View Article and Find Full Text PDF

Novel methods to construct small molecule-protein bioconjugates are integral to the development of new biomedicines for a variety of diseases. C-C linked bioconjugates are increasingly desirable in this application due to their stability and can be accessed through cross aldol bioconjugation of reactive α-oxo aldehyde handles easily introduced at the N-terminus of proteins by periodate oxidation. We previously developed an organocatalyst-mediated protein aldol ligation (OPAL) for chemical modification of these reactive aldehydes, but the efficiency of this method was limited when a proline residue was directly adjacent to the N-terminus due to intramolecular hemiaminal formation.

View Article and Find Full Text PDF

Optimal dosing of opioid agonist therapy (OAT) is essential for treatment success. However, initiation and maintenance of OAT in hospital settings can be challenging given differing levels of opioid tolerance, withdrawal, and intoxication among patients. The objective of this study was to characterize the prevalence and factors associated with in-hospital patient perceived suboptimal OAT dosing among people who use illicit drugs (PWUD) in Vancouver, Canada.

View Article and Find Full Text PDF

Site-selective chemical methods for protein bioconjugation have revolutionized the fields of cell and chemical biology through the development of novel protein/enzyme probes bearing fluorescent, spectroscopic, or even toxic cargos. Herein, we report two new methods for the bioconjugation of α-oxo aldehyde handles within proteins using small molecule aniline and/or phenol probes. The "α-oxo-Mannich" and "catalyst-free aldol" ligations both compete for the electrophilic α-oxo aldehyde, which displays pH divergent reactivity proceeding through the "Mannich" pathway at acidic pH to afford bifunctionalized bioconjugates, and the "catalyst-free aldol" pathway at neutral pH to afford monofunctionalized bioconjugates.

View Article and Find Full Text PDF