Publications by authors named "S Ait-Yahia"

Background: House dust mite is the most frequent trigger of allergic asthma, with innate and adaptive immune mechanisms playing critical roles in outcomes. We recently identified the nucleotide-binding oligomerisation domain 1 (NOD1)/receptor-interacting serine/threonine protein kinase 2 (RIPK2) signalling pathway as a relevant contributor to murine house dust mite-induced asthma. This study aimed to evaluate the effectiveness of a pharmacological RIPK2 inhibitor administered locally as a preventive and therapeutic approach using a house dust mite-induced asthma model in wild-type and humanised NOD1 mice harbouring an asthma-associated risk allele, and its relevance using air-liquid interface epithelial cultures from asthma patients.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain 2 (NOD2) recognizes pathogens associated with the development of asthma. Moreover, NOD2 adjuvants are used in vaccine design to boost immune responses. Muramyl di-peptide (MDP) is a NOD2 ligand, which is able to promote Th2/Th17 responses.

View Article and Find Full Text PDF

Asthma is an extremely prevalent chronic inflammatory disease of the airway where innate and adaptive immune systems participate collectively with epithelial and other structural cells to cause airway hyperresponsiveness, mucus overproduction, airway narrowing, and remodeling. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular innate immune sensors that detect microbe-associated molecular patterns and damage-associated molecular patterns, well-recognized for their central roles in the maintenance of tissue homeostasis and host defense against bacteria, viruses and fungi. In recent times, NLRs have been increasingly acknowledged as much more than innate sensors and have emerged also as relevant players in diseases classically defined by their adaptive immune responses such as asthma.

View Article and Find Full Text PDF

Live attenuated vaccines often have beneficial non-specific effects, protecting against heterologous infectious and non-infectious diseases. We have developed a live attenuated pertussis vaccine, named BPZE1, currently in advanced clinical development. Here, we examined the prophylactic and therapeutic potential of its pertactin-deficient derivative BPZE1P in a mouse model of house dust mite (HDM)-induced allergic airway inflammation (AAI).

View Article and Find Full Text PDF