Background: Acute Coronary Syndrome (ACS) stands as a significant contributor to cardiovascular mortality, necessitating improved diagnostic tools for early detection and tailored therapeutic interventions. Current diagnostic modalities, exhibit limitations in sensitivity and specificity, urging the quest for novel biomarkers to enhance discrimination of the different stages of ACS including unstable angina, Non-ST-segment Elevation Myocardial Infarction (NSTEMI), and ST-segment Elevation Myocardial Infarction (STEMI).
Methods: This study investigated the potential of a plasma-circulating multi-noncoding RNA (ncRNA) panel, comprising four miRNAs (miR-182-5p, miR-23a-3p, miR-146a-5p, and miR-183-5p) and three lncRNAs (SNHG15, SNHG5, and RMRP), selected based on their intricate involvement in ACS pathogenesis and signaling pathways regulating post-myocardial infarction (MI) processes.
Introduction: Type 2 diabetes mellitus (T2DM) is a major global health concern. It usually develops gradually and is frequently preceded by undetectable pre-diabetes mellitus (pre-DM) stage. The purpose of this study was to identify a novel set of seven candidate genes associated with the pathogenesis of insulin resistance (IR) and pre-DM, followed by their experimental validation in patients' serum samples.
View Article and Find Full Text PDFBackground: Nonalcoholic fatty pancreatitis (NAFP) is one of the metabolic syndrome manifestations that need further studies to determine its molecular determinants and find effective medications. We aimed to investigate the potential effect of benzyl propylene glycoside on NAFP management via targeting the pancreatic cGAS-STING pathway-related genes (DDX58, NFκB1 & CHUK) and their upstream regulator miRNA (miR-1976) that were retrieved from bioinformatics analysis.
Methods: The rats were fed either normal chow or a high-fat high-sucrose diet (HFHS), as a nutritional model for NAFP.
Type 2 Diabetes Mellitus (T2DM) is a metabolic disease associated with inflammation widening the scope of immune-metabolism, linking the inflammation to insulin resistance and beta cell dysfunction. New potential and prognostic biomarkers are urgently required to identify individuals at high risk of β-cell dysfunction and pre-DM. The DNA-sensing stimulator of interferon genes (STING) is an important component of innate immune signaling that governs inflammation-mediated T2DM.
View Article and Find Full Text PDF