This study aimed at examining the bond strength between zirconia and ceramic veneer, following the ISO 9693 guidelines. A total of fifty specimens of zirconia/ceramic-veneer system were produced using two commercial zirconias (VITA YZ-HT and Zolid HT+ White, referred to as Group A and Group B, respectively) and a ceramic-veneering material (Zirkonia 750). The microstructure (via x-ray diffraction analysis, XRD and Secondary Electron mode, SEM) and the mechanical properties (via 3-point bending tests) of the two groups were assessed.
View Article and Find Full Text PDFDeveloping robust electrodes with high catalytic performance is a key step for expanding practical HER (hydrogen evolution reaction) applications. This paper reports on novel porous MoC-based ceramics with oriented finger-like holes directly used as self-supported HER electrodes. Due to the suitable MoO sintering additive, high-strength (55 ± 6 MPa) ceramic substrates and a highly active catalytic layer are produced in one step.
View Article and Find Full Text PDFThe present study aimed to compare the microstructure, physical, and mechanical properties of three commercially available dental polychromatic multilayer zirconia materials of uniform composition: Dima Mill Zirconia ML, VITA YZ/ST Multicolor, and VITA YZ/XT Multicolor (with 3, 4, and 5 mol% Y O , respectively); thus, the influence of Y O content on the above properties of the produced materials was experimentally studied. Homogeneous zirconia ceramics with a dense micro- and nanostructure, without pores or defects, were produced after milling the blocks and sintering, which resulted in yttrium-stabilized tetragonal and cubic zirconia. Statistical analysis of the results of measurable magnitudes was performed by the one-way ANOVA test.
View Article and Find Full Text PDFJ Esthet Restor Dent
October 2023
Objective: The present study determined the mechanical properties and the wear behavior, as results of the micro(nano)structure, of the enamel, transition, and dentine layers, which comprise the polychromic multilayer zirconia materials of hybrid composition fabricated by milling technology.
Materials And Methods: Prismatic blocks were fabricated from two commercial pre-sintered dental polychromic multilayer zirconia materials of hybrid composition, IPS e.max ZirCAD Prime (medium and high translucency, from the dentine to the incisal layer) and 3D Pro ML (translucency gradient, from the dentine to the incisal layer) by milling technique, and then, cut into 3 distinct parts to separate the enamel, transition, and dentine layers.