The increased use of nanoparticles (NPs) requires efficient testing of their potential toxic effects. A promising approach is to use reporter cell lines to quickly assess the activation of cellular stress response pathways. This study aimed to use the ToxTracker reporter cell lines to investigate (geno)toxicity of various metal- or metal oxide NPs and draw general conclusions on NP-induced effects, in combination with our previous findings.
View Article and Find Full Text PDFThis work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles.
View Article and Find Full Text PDFStudded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu).
View Article and Find Full Text PDFAbstract: In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30-80 % when sonicating in 1 and 2.
View Article and Find Full Text PDFFrom an increased use of silver nanoparticles (Ag NPs) as an antibacterial in consumer products follows a need to assess the environmental interaction and fate of their possible dispersion and release of silver. This study aims to elucidate an exposure scenario of the Ag NPs potentially released from, for example, impregnated clothing by assessing the release of silver and changes in particle properties in sequential contact with synthetic sweat, laundry detergent solutions, and freshwater, simulating a possible transport path through different aquatic media. The release of ionic silver is addressed from a water chemical perspective, compared with important particle and surface characteristics.
View Article and Find Full Text PDF