Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp.
View Article and Find Full Text PDFMutS2 proteins are presumably involved in either control of recombination or translation quality control in bacteria. MutS2 homologs have been found in plants and some algae; however, their actual diversity in eukaryotes remains unknown. We found putative MutS2 homologs in various species of photosynthetic eukaryotes and performed a detailed analysis of the revealed amino acid sequences.
View Article and Find Full Text PDFHarmful algal blooms (HABs) and their consequences cause multiple devastating effects in various freshwater, brackish and marine ecosystems. However, HAB species at moderate population densities have positive ecological roles as primary producers of organic matter and food for zooplankton and fish. They also enhance benthic-pelagic coupling and participate in the biogeochemical cycles.
View Article and Find Full Text PDFRhizochromulina marina is a unicellular amoeboid alga capable of forming flagellate cells; it is a single validly named species in the genus. Besides, there are numerous environmental sequences and undescribed strains designated as Rhizochromulina sp. or R.
View Article and Find Full Text PDFNitrogen (N) and phosphorus (P) are essential elements whose availability promotes successful growth of phytoplankton and governs aquatic primary productivity. In this study, we investigated the effect of N and/or P deficiency on the sexual reproduction of Prorocentrum cordatum, the dinoflagellate with the haplontic life cycle which causes harmful algal blooms worldwide. In P.
View Article and Find Full Text PDF