Publications by authors named "S A Savage"

The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. We characterized a variable number tandem repeat within intron 6 (VNTR6-1, 38-bp repeat unit) and observed a strong association between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.

View Article and Find Full Text PDF

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers to learn from data and discern patterns without direct instruction. This review explores cutting-edge developments in microsurgery through the lens of AI applications. By analyzing a wide range of studies, this paper highlights AI's transformative role in enhancing microsurgical techniques and decision-making processes.

View Article and Find Full Text PDF

Introduction: Diamond Blackfan anaemia (DBA) is a rare disorder characterized by failure of red blood cell production, congenital abnormalities and cancer predisposition, primarily caused by pathogenic germline variants in genes encoding ribosomal proteins.

Methods: We conducted a genotype-phenotype and outcome study of 121 patients with DBA spanning the 20-year history of the National Cancer Institute's Inherited Bone Marrow Failure Syndromes study. Patient phenotypes were compared by large versus small ribosomal protein genes, across genes with >5 cases (, , and ) and by type of pathogenic variants (hypomorphic versus null, large deletions versus others).

View Article and Find Full Text PDF

Background: Web-based information and social support are commonly used in rare disease communities where geographic dispersion and limited provider expertise complicate in-person support. We examined web-based resource use among caregivers of individuals with telomere biology disorders (TBDs), which are rare genetic conditions with long diagnostic odysseys and uncertain prognoses including multiorgan system cancer risk.

Objective: This study explored internet-based information-seeking and social support practices and perspectives of patients with TBDs and their caregivers.

View Article and Find Full Text PDF

Importance: Telomere biology disorders (TBDs) are inherited cancer-prone bone marrow failure syndromes with differences in morbidity and mortality based on mode of inheritance.

Objective: To quantify cancer risks in TBDs by genetic subgroups.

Design, Setting, And Participants: This longitudinal cohort study of TBDs assessed cancer occurrences from 2002 through 2022.

View Article and Find Full Text PDF