Zh Evol Biokhim Fiziol
July 2015
This study reports the dynamics of changes in postnatal ontogenesis of the activity of soluble and membrane-bound forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in sensorimotor cortex of rats as well as the pattern of their changes after prenatal hypoxia (E14, 7% O2, 3 h) or acute hypoxia in adult animals (4 months, 7% O2, 3 h). In normally developing rats the activity of the membrane-bound AChE form in the sensorimotor cortex gradually increased up to the end of the first month after birth and remained at this high level during all further postnatal ontogenesis, while the activity of the soluble form of AChE reached its maximum on the 10th day after birth and decreased significantly by the end of the first month. In animals exposed to prenatal hypoxia the activity both of the soluble and membrane bound forms of AChE during the first two weeks after birth was 20-25% lower, as compared to controls but increased by the end of the first month and even exceeded the control values remaining increased up to old age (1.
View Article and Find Full Text PDFDue to an increasing life expectancy in developing countries, cases of type 2 diabetes and Alzheimer's disease (AD) in the elderly are growing exponentially. Despite a causative link between diabetes and AD, general molecular mechanisms underlying pathogenesis of these disorders are still far from being understood. One of the factors leading to cell death and cognitive impairment characteristic of AD is accumulation in the brain of toxic aggregates of amyloid-β peptide (Aβ).
View Article and Find Full Text PDFThe functional state of the adenylyl cyclase signaling system (ACSS) and its regulation by hormones, the inhibitors of adenylyl cyclase (AC)--somatostatin (SST) in the brain and myocardium and 5-nonyloxytryptamine (5-NOT) in the brain of rats of different ages (5- and 7-month-old) with experimental obesity and a combination of obesity and type 2 diabetes mellitus (DM2), and the effect of long-term treatment of animals with intranasally administered insulin (II) on ACSS were studied. It was shown that the basal AC activity in rats with obesity and DM2 was increased in the myocardium, and to the lesser extent in the brain, the treatment with II reducing this parameter. The AC stimulating effects of forskolin are decreased in the myocardium, but not in the brain, of rats with obesity and DM2.
View Article and Find Full Text PDFPeptides of the insulin superfamily (insulin, insulin-like growth factor, relaxin), epidermal.growth factor (ECF) and biogenic amines (isoproterenol, adrenalin, noradrenalin, serotonin) stimulate the adenylyl cyclase signaling system (ACSS). In erythrocyte membranes from a control group of patients, the hormone activating affect on ACSS was potentiated in the presence of guanylylimidinodiphosphate (CppNHp).
View Article and Find Full Text PDFIn smooth muscles of mollusc Anodonta cygnea, hormones produce regulatory effects on the adenylyl cyclase (AC) signaling system via receptors of the serpentine (biogenic amine, isoproterenol, glucagon) and of tyrosine kinase (insulin) types. Intracellular mechanisms of their action are interconnected. Use of hormones, their antagonists, and pertussis toxin at the combined action of insulin and biogenic amines or of glucagon on the AC activity allows revealing possible intersection points in mechanisms of their action.
View Article and Find Full Text PDF