Single-solute batch kinetic and isotherm experiments were conducted in Type 1 (18.2 MΩ·cm resistivity) water supplemented with 10 mM carbonate buffer (pH 7.75, 25 °C) for nine drinking water relevant perfluoroalkyl chemicals and three bituminous-coal based granular activated carbons (GACs).
View Article and Find Full Text PDFBackground And Objectives: Prompt antibiotics have been shown to improve outcomes in pediatric sepsis, which continues to be a leading cause of death in children. We describe the quality improvement (QI) efforts of a single academic children's hospital to improve antibiotic timeliness.
Methods: Using the electronic health record, we report time from order to the administration of stat intravenous (IV) antibiotics from 2012 to 2020 using statistical process control charts.
Biomacromolecules
June 2020
Recently, there has been growing interest in harnessing genetically engineered polymers to develop responsive biomaterials, such as hydrogels. Unlike their synthetic counterparts, genetically engineered polymers are produced without the use of toxic reagents and can easily be programmed to incorporate desirable hydrogel properties, including bioactivity, biodegradability, and monodispersity. Herein, we report the development of a copolymeric hydrogel that is based on the calcium-dependent protein, calmodulin (CaM).
View Article and Find Full Text PDFCadherins are the transmembrane component in adherens junctions, structures that link the actin cytoskeletons in adjacent cells within solid tissues including neurological synapses, epithelium and endothelium. Cell-cell adhesion by cadherins requires the binding of calcium ions to specific sites in the extracellular region. Given the complexity of the cell adhesion microenvironment, we are investigating whether other divalent cations might affect calcium-dependent dimerization of neural (N) cadherin.
View Article and Find Full Text PDFCadherins are calcium-dependent, transmembrane adhesion molecules that assemble through direct noncovalent association of their N-terminal extracellular modular domains. As the transmembrane component of adherens junctions, they indirectly link adherent cells' actin cytoskeletons. Here, we investigate the most distal extracellular domain of neural cadherin (N-cadherin), a protein required at excitatory synapses, the site of long-term potentiation.
View Article and Find Full Text PDF