Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical aperture (NA = 1.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region.
View Article and Find Full Text PDFThe synthesis of new hybrid halide materials is attracting increasing research interest due to their potential optoelectronic applications. However, general design principles that explain and predict their properties are still limited. In this work, we attempted to reveal the role of intermolecular interactions on the optical properties in a series of hybrid halides with an (EtNH)SnTeCl ( = 1-4) composition.
View Article and Find Full Text PDFFor , where are mutually independent fractional Brownian motions, we obtain the exact asymptotics of where is a non-singular matrix and , are such that there exists some such that
View Article and Find Full Text PDF