Water pollution is nowadays a global problem and the effective detection of pollutants is of fundamental importance. Herein, a facile, efficient, robust, and rapid (response time < 2 min) method for the determination of important quinone-based industrial pollutants such as hydroquinone and benzoquinone is reported. The recognition method is based on the use of screen-printed electrodes as sensing platforms, enhanced with carbon-based nanomaterials.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2021
We propose an original technique for the fabrication of terahertz (THz) metasurfaces comprising a 3D printed regular array of polymer hemispheres covered with a thin conductive layer. We demonstrate that the deposition of a thin metal layer onto polymer hemispheres suppresses the THz reflectivity to almost zero, while the frequency range of such a suppression can be considerably broadened by enhancing the structure with graphene. Scaling up of the proposed technique makes it possible to tailor the electromagnetic responses of metasurfaces and allows for the fabrication of various components of THz photonics.
View Article and Find Full Text PDFThe patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power.
View Article and Find Full Text PDFThe composites and thin films comprising individual single-walled carbon nanotubes with a polymer coating (p-CNTs) have been prepared and their electromagnetic responses have been studied in a wide range from low-frequency (25-10 Hz) up to the infrared region. In spite of the high volume fraction of the nanotubes (up to 3.3%), the polymer coating prevents direct p-CNT contacts and the formation of the percolation network in those composites, so that p-CNTs interact only via the electromagnetic coupling.
View Article and Find Full Text PDF