Electronic nicotine delivery systems (ENDS) are unique from combustible cigarettes due to the availability of flavor options which make these devices popular among adolescents. However, there are no preclinical investigations into the impact of vaporized nicotine on late-developing brain regions such as the prefrontal cortex. Here, we investigated how neuronal function and drug self-administration differed between adult-exposed and adolescent-exposed mice.
View Article and Find Full Text PDFThe amygdala is an established site for fear memory formation, and clinical studies suggest involvement of hormone signaling cascades in development of trauma-related disorders. While an association of thyroid hormone (TH) status and mood disorders is established, the related brain-based mechanisms and the role of TH in anxiety disorders are unknown. Here we examine the role that TH receptor (TR, a nuclear transcriptional repressor when unbound and a transcriptional activator when bound to TH) may have in mediating the initial formation of fear memories in the amygdala.
View Article and Find Full Text PDFClin Child Fam Psychol Rev
June 2024
Evidence-based parenting interventions (EBPI) support children and families to promote resilience, address emotional and behavioral concerns, and prevent or address issues related to child maltreatment. Critiques of EBPIs include concerns about their relevance and effectiveness for diverse populations when they are implemented at population scale. Research methods that center racial equity and include community-based participatory approaches have the potential to address some of these concerns.
View Article and Find Full Text PDFConventional life-history theory predicts that energy-demanding events such as reproduction and migration must be temporally segregated to avoid resource limitation. Here, we provide, to our knowledge, the first direct evidence of 'itinerant breeding' in a migratory bird, an incredibly rare breeding strategy (less than 0.1% of extant bird species) that involves the temporal overlap of migratory and reproductive periods of the annual cycle.
View Article and Find Full Text PDFMicrofluidic artificial lungs (μALs) are a new class of membrane oxygenators. Compared to traditional hollow-fiber oxygenators, μALs closely mimic the alveolar microenvironment due to their size-scale and promise improved gas exchange efficiency, hemocompatibility, biomimetic blood flow networks, and physiologically relevant blood vessel pressures and shear stresses. Clinical translation of μALs has been stalled by restrictive microfabrication techniques that limit potential artificial lung geometries, overall device size, and throughput.
View Article and Find Full Text PDF