Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons.
View Article and Find Full Text PDFSeveral metabolic hormones signal an organism's energy balance to the brain and modulate feeding behaviours accordingly. These metabolic signals may also regulate other behaviour related to energy balance, such as food caching or hoarding. Ghrelin is one such hormone, but it appears to exert different effects on appetite and fat levels in birds and mammals.
View Article and Find Full Text PDFMigratory animals may trade-off between investing energy in immune defense versus investing in energy reserves needed for seasonal migration. However, these trade-offs are often masked by other sources of variation and may not be detected through observational field studies of free-living animals. Moreover, observational studies can rarely distinguish the costs of pathogenic infection from those of mounting an immune response.
View Article and Find Full Text PDFCluster N is a region of the visual forebrain of nocturnally migrating songbirds that supports the geomagnetic compass of nocturnal migrants. Cluster N expresses immediate-early genes (ZENK), indicating neuronal activation. This neuronal activity has only been recorded at night during the migratory season.
View Article and Find Full Text PDFMethylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain.
View Article and Find Full Text PDF