Publications by authors named "S A Levitan"

Coronavirus disease 2019 (COVID-19) started in Wuhan, China, in late 2019, and after being utterly contagious in Asian countries, it rapidly spread to other countries. This disease caused governments worldwide to declare a public health crisis with severe measures taken to reduce the speed of the spread of the disease. This pandemic affected the lives of millions of people.

View Article and Find Full Text PDF

Inspired by the advances in both materials and computer science, we describe efforts to design "materials that compute" where the material and the computer are the same entity. Using theory and simulation, we devise systems that integrate the behavior of self-oscillating gels and fundamental concepts from oscillator-based computing. We specifically focus on gels that undergo the Belousov-Zhabotinsky (BZ) reaction and thus exhibit self-sustained oscillations.

View Article and Find Full Text PDF

Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever.

View Article and Find Full Text PDF

Cnidarians are widely distributed basal metazoans that play an important role in the marine ecosystem. Their genetic diversity and dispersal depends on successful oogenesis, fertilization and embryogenesis. To understand the processes that lead to successful embryogenesis in these basal organisms, we conducted comparative proteomics on the model sea anemone Nematostella vectensis.

View Article and Find Full Text PDF

Polymer gels undergoing the oscillatory Belousov-Zhabotinsky (BZ) reaction are one of the few synthetic materials that exhibit biomimetic mechano-chemical transduction, converting mechanical input into chemical energy. Here, we consider self-oscillating BZ gels that are subjected to periodic mechanical forcing, and model the entrainment of the oscillatory gel dynamics to this external stimulus. The gel size is assumed to be sufficiently small that the chemo-mechanical oscillations are spatially uniform.

View Article and Find Full Text PDF