We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.
View Article and Find Full Text PDFInteractions of the cations Li, Na, Mg, and Ca with L-glutamate (Glu) in aqueous solution were studied at room temperature with dielectric relaxation spectroscopy in the gigahertz region. Spectra of ∼0.4 M NaGlu with added LiCl, NaCl, MgCl, or CaCl ((MCl) ≤ 1.
View Article and Find Full Text PDFMoiré effects in vertical stacks of two-dimensional crystals give rise to new quantum materials with rich transport and optical phenomena that originate from modulations of atomic registries within moiré supercells. Due to finite elasticity, however, the superlattices can transform from moiré-type to periodically reconstructed patterns. Here we expand the notion of such nanoscale lattice reconstruction to the mesoscopic scale of laterally extended samples and demonstrate rich consequences in optical studies of excitons in MoSe-WSe heterostructures with parallel and antiparallel alignments.
View Article and Find Full Text PDFCharacterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data.
View Article and Find Full Text PDFThe entry of the SARS-CoV-2, a causative agent of COVID-19, into human host cells is mediated by the SARS-CoV-2 spike (S) glycoprotein, which critically depends on the formation of complexes involving the spike protein receptor-binding domain (RBD) and the human cellular membrane receptor angiotensin-converting enzyme 2 (hACE2). Using classical site density functional theory (SDFT) and structural bioinformatics methods, we investigate binding and conformational properties of these complexes and study the overlooked role of water-mediated interactions. Analysis of the three-dimensional reference interaction site model (3DRISM) of SDFT indicates that water mediated interactions in the form of additional water bridges strongly increases the binding between SARS-CoV-2 spike protein and hACE2 compared to SARS-CoV-1-hACE2 complex.
View Article and Find Full Text PDF