Int J Mol Sci
January 2023
The COVID-19 pandemic has required extensive research on the new coronavirus SARS-CoV-2 and the creation of new highly effective vaccines. The presence of T-cells in the body that respond to virus antigens suggests adequate antiviral immunity. We investigated T-cell immunity in individuals who recovered from mild and moderate COVID-19 and in individuals vaccinated with the Gam-COVID-Vac combined vector vaccine.
View Article and Find Full Text PDFModification of the cell surface with artificial nano- and microparticles (also termed "cellular backpacks") containing biologically active payloads usually enables drug targeting via harnessing intrinsic cell tropism to the sites of injury. In some cases, using cells as delivery vehicles leads to improved pharmacokinetics due to extended circulation time of cell-immobilized formulations. Another rationale for particle attachment to cells is augmentation of desirable cellular functions and cell proliferation in response to release of the particle contents.
View Article and Find Full Text PDFReducing the undesirable systemic effect of photodynamic therapy (PDT) can be achieved by incorporating a photosensitizer in microparticles (MPs). This study is devoted to the preparation of biocompatible biodegradable MPs with the inclusion of the natural photosensitizer Radachlorin (RС) and an assessment of the possibility of their use for PDT. RC-containing MPs (RС MPs) with poly(lactic-co-glycolic acid) copolymer (PLGA) matrix were prepared by a double emulsion solvent evaporation methods.
View Article and Find Full Text PDF