In order to measure the fast ion using neutral particle analyzers (NPAs) in the low neutral density core region of a magnetic confinement fusion device, active change exchange measurements are often performed using a neutral beam (NB) as a charge-exchange (CX) target. One of the complications with this approach is that an NB injected as a CX target can also contribute to the total fast ion source. C-2W has a unique solution to this difficulty in that it is equipped with both eight NB injectors, which can inject beams of different particle species, and an electro-magnetic NPA (EM-NPA), which can measure multiple ion species simultaneously.
View Article and Find Full Text PDFIn TAE Technologies' current experimental device, C-2W, neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. Diagnosis of these fast ions is therefore critical for understanding the behavior of the FRC. Neutral Particle Analyzers (NPAs) are used to measure the energy spectrum of fast ions that charge exchange on background or beam neutrals and are lost from the plasma.
View Article and Find Full Text PDFThe C-2W experiment produces advanced beam-driven field reversed configuration (FRC) plasmas, which are sustained in steady state utilizing variable energy neutral beams (15-40 keV, total power up to 21 MW), advanced divertors, end bias electrodes, and an active plasma control system. Since heating, current drive, and refueling from neutral beam injection are essential to FRC sustainment, it is crucial to have accurate measurements of the beam power being injected into the plasma. A new tungsten wire calorimeter has been designed, built, calibrated on a test stand, and implemented to make the first direct measurements of the time-average injected beam power into C-2W.
View Article and Find Full Text PDFNeutral beam injected fast ions play a dominant role in both the field reversed configuration (FRC) at TAE Technologies and the Madison Symmetric Torus (MST) reversed field pinch (RFP), making fast ion diagnosis a major pillar of both research programs. And as strongly self-organized plasmas, the FRC and RFP similarly exhibit dynamic relaxation events which can redistribute fast ions. Recently, a collaboration between TAE Technologies and the University of Wisconsin was conducted to develop a method for measuring a fast changing fast ion spatial profile with a fusion proton detector and to investigate commonalities between the two plasmas.
View Article and Find Full Text PDF