Hybrid composites are now becoming increasingly important regarding economic and ecological compatibility. This study presented the research results that evaluate the feasibility of using cherry pit shell (CPSh) and chicken eggshell (ChESh) natural wastes as a new hybrid filler mixture for the first time. CPSh and ChESh can reduce the composite material cost and increase the biobased content.
View Article and Find Full Text PDFBisphenol A-type epoxy (ER) is a versatile synthetic polymer preferred for composite materials but non-biodegradability raises challenges for composites recycling in particular. The present study first investigated the potential usability of peach kernel shells (PKSh) waste as fillers in ER to decrease the cost of composite materials and increase their bio-based content. Different chemical modifications were performed to increase the poor compatibility between the hydrophilic lignocellulosic filler and the hydrophobic polymer matrix.
View Article and Find Full Text PDFIn this study, adsorption isotherms (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and thermodynamic properties of cationic methylene blue (MB) dye adsorption onto chitosan-coated peach kernel shell waste (CTS-PKSh) from wastewater were investigated. CTS was cross-linked with citric acid (CA) and glutaraldehyde (GA). The adsorbents were characterized by FE-SEM/EDS, FTIR, and particle size distribution.
View Article and Find Full Text PDFModulation based on the plasma dispersion effect can be achieved by controlling free carriers in the optical region with the aid of pn junction diodes. The embedded diodes are commonly realized with ion implantation, which is only available in large facilities with significant costs and sparse schedules. A cost- and time-effective method is reported in this study to improve flexibility during the development phase.
View Article and Find Full Text PDFRix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore.
View Article and Find Full Text PDF