Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes: adsorption, activation, desorption, and reaction. These processes, in turn, depend on the inlet gas composition, temperature, and pressure.
View Article and Find Full Text PDFX-ray absorption spectroscopy (XAS) has been central to the study of the Phillips polymerization catalyst (CrO/SiO). As Cr K-edge XAS signatures are sensitive to the oxidation state, geometry and types of ligands on surface (active) sites, the superposition of these effects makes their interpretation challenging. Notably, CO has been particularly used as a reductant to generate low valent Cr sites from CrO/SiO and as a structural IR probe for analysing reduced Cr surface sites.
View Article and Find Full Text PDFHard X-ray absorption spectroscopy is a valuable in situ probe for non-destructive diagnostics of metal sites. The low-energy interval of a spectrum (XANES) contains information about the metal oxidation state, ligand type, symmetry and distances in the first coordination shell but shows almost no dependency on the bridged metal-metal bond length. The higher-energy interval (EXAFS), on the contrary, is more sensitive to the coordination numbers and can decouple the contribution from distances in different coordination shells.
View Article and Find Full Text PDFTi-based molecules and materials are ubiquitous and play a major role in both homogeneous and heterogeneous catalytic processes. Understanding the electronic structures of their active sites (oxidation state, local symmetry, and ligand environment) is key to developing molecular-level structure-property relationships. In that context, X-ray absorption spectroscopy (XAS) offers a unique combination of elemental selectivity and sensitivity to local symmetry.
View Article and Find Full Text PDF