Background: The global demographic shift towards an aging population is generating a rise in neurodegenerative conditions, with Alzheimer's disease (AD) as the most prominent problem. In this landscape, the use of natural supplements has garnered attention for their potential in dementia prevention. Curcumin (Cur), derived from Curcuma longa, has demonstrated promising pharmacological effects against AD by reducing the levels of inflammatory mediators.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder that progressively involves brain regions with an often-predictable pattern. Damage to the brain appears to spread and worsen with time, but the molecular mechanisms underlying the region-specific distribution of AD pathology at different stages of the disease are still under-investigated. In this study, a whole-transcriptome analysis was carried out on brain samples from the hippocampus (HI), temporal and parietal cortices (TC and PC, respectively), cingulate cortex (CG), and substantia nigra (SN) of six subjects with a definite AD diagnosis and three healthy age-matched controls in duplicate.
View Article and Find Full Text PDFStudying ionic liquids (ILs) through computational methods is one of the ways to accelerate progress in the design of novel and potentially green materials optimized for task-specific applications. Therefore, it is essential to develop simple and cost-effective computational procedures that are able to replicate and predict experimental data. Among these, spectroscopic measurements are of particular relevance since they are often implicated in structure-property relationships, especially in the infrared spectral region, where characteristic absorption and scattering processes due to molecular vibrations are ultimately influenced by the surrounding environment in the condensed phase.
View Article and Find Full Text PDF